Combinatorial Networks Week 6, April 22-23

Even-cycles-free

- For bipartite H (so $\chi(H)=2$), it is unknown the order of ex(n,H).
- For any H with $\chi(H) = k + 1 \ge 3$, $ex(n, H) = (1 \frac{1}{k} + o_H(1))\frac{n^2}{2}$.
- For special bipartite graphs, the even cycles C_{2t} , it is known that $ex(n, C_{2t}) \leq O(n^{1+\frac{1}{t}})$
- Conjecture. $\forall t \geqslant 2, \ ex(n, C_{2t}) = \Theta(n^{1+\frac{1}{t}})$
- **Definition.** Let $\mathcal{F} = \{\text{some graphs } H\}$, $ex(n, \mathcal{F}) = \text{the maximum of } e(G)$, G has n vertices, $\forall H \in \mathcal{F}$, G is H-free.
- Theorem. $\forall t \ge 2$, $ex(n, \{C_3, C_4, \dots, C_{2t}\}) \le n^{1+\frac{1}{t}} + n$
- **Lemma.** Every graph with at least dn edges has a subgraph whose minimum degree is at least d.
- **Proof of Lemma.** Delete vertices whose degrees are less than d. The subgraph left is not empty because the number of deleted edges is less than dn.
- **Proof of Theorem.** Suppose there is a $\{C_3, C_4, \cdots, C_{2t}\}$ -free n-vertices graph G with more than $n^{1+\frac{1}{t}}+n$ edges. By lemma, G has a subgraph G' with minimum degree $S(G') \ge n^{\frac{1}{t}}+1$. Consider G' and the BFS-tree(Breadth-First Search).

Fix $v \in V(G')$, define $L_0 = v$, $L_1 = N(v)$

$$L_{i+1} = \{ w \in V(G') - \bigcup_{j=0}^{i} L_j : \exists u \in L_i, uw \in E(G') \} = N(L_i) - \bigcup_{j=0}^{i} L_j$$

And G' is $\{C_3, C_4, \dots, C_{2t}\}$ -free, so $|L_i| \ge n^{\frac{1}{t}} |L_{i-1}|, |L_i| \ge n^{\frac{i}{t}}, |L_t| \ge n$, a contradiction. This shows that $ex(n, \{C_3, C_4, \dots, C_{2t}\}) \le n^{1+\frac{1}{t}} + n$.

$K_{t,t}$ -free

- Recall: $ex(n, K_{s,t}) \leqslant Cn^{2-\frac{1}{t}}$ for $s \geqslant t \geqslant 2$
- Conjecture. $\forall t \geq 2, \ ex(n, K_{t,t}) = \Theta(n^{2-\frac{1}{t}})$ open for $t \geq 4$, need a lower bound.
- Theorem(Erdös). $ex(n, K_{2,2}) = \Theta(n^{\frac{3}{2}})$
- **Proof.** We construct an n-vertex graph with NO $K_{2,2}$ as follows. Let $p \ge 2$ be a prime, $V(G) = \{(x,y) : x,y \in \mathbb{Z}_p, x \ne y\}$, n = p(p-1). For (x,y), $(a,b) \in V(G)$, define $(x,y) \stackrel{G}{\backsim} (a,b)$ iff $xa + yb \equiv 1 \pmod{p}$. And $\forall v \in V(G)$, d(v) = p, we call G is p-regular.

Next we verify G is $K_{2,2}$ -free. Suppose NOT, say $\exists (a1,b1), (a2,b2) \in V(G)$, s.t.

$$\begin{cases} a_1x + b_1y \equiv 1 \mod p \\ a_2x + b_2y \equiv 1 \mod p \end{cases}$$

has 2 solutions, a contradiction.

- Theorem(Brown). $ex(n, K_{3,3}) = \Theta(n^{\frac{5}{3}})$
- **Proof.** Let $p \ge 2$ be a prime, define G by $V(G) = \{(x, y, z) : x, y, z \in \mathbb{Z}_p, x \ne y \ne z\}$, n = p(p-1)(p-2). For (x, y, z), $(a, b, c) \in V(G)$, $(x, y, z) \stackrel{G}{\hookrightarrow} (a, b, c)$ iff $(x-a)^2 + (y-b)^2 + (z-c)^2 \equiv 1 \pmod{p}$. G is p-regular with $d = \Theta(p^2)$, $e(G) = \frac{1}{2}nd = \Theta(n^{\frac{5}{3}})$ Verify G has NO $K_{3,3}$. Suppose NOT, say $\exists (a1, b1, c1), (a2, b2, c2) \in V(G)$, s.t.

$$\begin{cases} (x - a_1)^2 + (y - b_1)^2 + (z - c_1)^2 \equiv 1 \mod p \\ (x - a_2)^2 + (y - b_2)^2 + (z - c_2)^2 \equiv 1 \mod p \\ (x - a_3)^2 + (y - b_3)^2 + (z - c_3)^2 \equiv 1 \mod p \end{cases}$$

has 3 solutions, a contradiction. (Consider in \mathbb{R}^3 , since 3 spheres in general position intersect in at most 2 points.)

1-Distance Problems

- Recall: $ex(n, K_{s,t}) = O(n^{1-\frac{1}{t}})$. In particular, $ex(n, K_{2,3}) = O(n^{\frac{3}{2}})$
- **Problem 1.** In plane, given *n* vertices in general position, how many pairs of points have distance 1?
- Define a graph G on these n vertices, $a \stackrel{G}{\backsim} b$ iff the distance between a and b is 1. **Fact.** G is $K_{2,3}$ -free. Because two circle at a and b with radius 1 intersect in at most 2 points.
- Theorem 1. There are at most $O(n^{\frac{3}{2}})$ pairs at distance 1.
- **Proof.** Define G as above, so the number of pairs at distance 1 equals to e(G), where G is $K_{2,3}$ -free.
- Erdös. Construct n points in plane with $n^{1+\frac{1}{\log\log n}}$ pairs at distance 1.
- Open Problem. Find an example of n points with n^{1+c} pairs at distance 1 for some c > 0.
- **Problem 2.** How many points in \mathbb{R}^n s.t. the distance between any 2 points is 1.
- Theorem 2. In \mathbb{R}^n , there are at most n+1 points such that the distance between any 2 points is 1.
- **Proof.** Consider \mathbb{R}^n , say $\exists m$ points with distance 1 to each other. We may assume that one of the m points is $(0,0,\cdots,0)$, then the other m-1 points can be viewed as vectors, say $v_1, v_2, \cdots, v_{m-1}$, and

$$\forall i, < v_i, v_i >= 1; \forall i \neq j, < v_i, v_j >= \frac{1}{2}$$

Let

$$A = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_{m-1} \end{pmatrix}_{(m-1)\times n} AA^T = \begin{pmatrix} 1 & 1/2 & \cdots & 1/2 \\ 1/2 & 1 & \cdots & 1/2 \\ \vdots & \vdots & \ddots & \vdots \\ 1/2 & 1/2 & \cdots & 1 \end{pmatrix}_{(m-1)\times (m-1)}$$

Since $\det(AA^T) \neq 0$, $m-1 = \operatorname{rank}(AA^T) \leqslant \operatorname{rank}(A) \leqslant n$, so $m \leqslant n+1$.

2-Distance Problem

- How many points can we have in \mathbb{R}^n , such that their distance are one of 2 choices.
- Example 1. We can find $\binom{n}{2}$ such points. Consider 0-1 vectors whose 1-norm are exactly 2.
- Example 2. We can find $\binom{n+1}{2}$ such points in a *n*-dimension space. In \mathbb{R}^{n+1} , we can find $\binom{n+1}{2}$ such points according to Example 1. And those points are in the plane $\{\boldsymbol{x}=(x_1,x_2,\cdots,x_{n+1}):\sum_{i=1}^{n+1}x_i=2\}$, which is a *n*-dimension space.
- **Theorem.** There are at most $\binom{n+2}{2} + n + 1$ points in \mathbb{R}^n such that there distances are of 2 choices.
- **Proof.** Let $a^{(1)}, a^{(2)}, \dots, a^{(m)} \in \mathbb{R}^n$ form a 2-distance set with distances d_1, d_2 , write $a^{(i)} = (a_1^{(i)}, a_2^{(i)}, \dots, a_n^{(i)})$. Define $f_i : \mathbb{R}^n \to \mathbb{R}$,

$$f_i(x) = (\|x - a^{(i)}\|^2 - d_1^2)(\|x - a^{(i)}\|^2 - d_2^2)$$

we have $f_i(a^{(i)}) = d_1^2 d_2^2$ for $\forall i$, and $f_i(a^{(j)}) = 0$ for $\forall i \neq j$.

Let $\lambda_1, \lambda_2, \dots, \lambda_m \in \mathbb{R}$, and $\sum_{i=1}^m \lambda_i f_i = 0$, that is $\sum_{i=1}^m \lambda_i f_i(x) \equiv 0$ for $\forall x \in \mathbb{R}^n$.

$$\forall j, 0 = \sum_{i=1}^{m} \lambda_i f_i(a^{(j)}) = \lambda_j d_1^2 d_2^2 \Rightarrow \lambda_j = 0$$

So f_1, f_2, \dots, f_m are linearly independent. They are all polynomials, and in the polynomial space which is spanned by

$$(\sum_{k=1}^{n} x_k^2)^2, (\sum_{k=1}^{n} x_k^2)x_i, x_i x_j, x_i, 1$$

whose dimension is $\binom{n+2}{2} + n + 1$. So $m = \dim \text{span}\{f_1, f_2, \dots, f_m\} \leqslant \text{the dimension of the space above} = \binom{n+2}{2} + n + 1$.

Odd-Town Problem

- **Problem.** Suppose we have a town with n people, they are assigned to form m clubs A_1, A_2, \dots, A_m such that
 - (1) $|A_i|$ is odd.
 - (2) $|A_i \cap A_j|$ is even for $\forall i \neq j$.

How many clubs can we have?

- Examples. Here are some examples where m=n.
 - $(1) A_i = \{i\}$
 - (2) $A_i = [n] \{i\}, n \text{ is even.}$
 - (3) $A_1 = [n] \{1\}, A_2 = [n] \{2\}$ and $A_i = \{1, 2, i\}$ for i > 2, n is even.

- **Theorem.** In the odd-town problem, $m \leq n$.
- **Proof.** For A_i , define 0-1 vector v_i , $v_i(j) = 1$ iff $j \in A_i$. We have $\langle v_i, v_i \rangle = |A_i|$ is odd.

 $\langle v_i, v_j \rangle = |A_i \cap A_j|$ is even for $\forall i \neq j$.

Claim: v_1, v_2, \dots, v_m are linearly independent over \mathbb{F}_2 .

Proof: Exercise.

Since $v_1, v_2, \dots, v_m \in \mathbb{F}_2^n$ are linearly independent, $m \leq n$.

Or we can let

$$A = \begin{pmatrix} \mathbf{v_1} \\ \mathbf{v_2} \\ \vdots \\ \mathbf{v_m} \end{pmatrix}_{m \times n} AA^T = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}_{m \times m} \text{ over } \mathbb{F}_2$$

so $m = \operatorname{rank}(AA^T) \leqslant \operatorname{rank} A \leqslant n$.

Even-Town Problem

- **Problem.** Suppose we have distinct $A_1, A_2, \dots, A_m \subseteq [n]$, satisfying
 - (1) $|A_i|$ is even.
 - (2) $|A_i \cap A_j|$ is even for $\forall i \neq j$.

How much can m be?

- **Example.** Pair the *n* elements into n/2 pairs, say $S = \{(1,2),(3,4),\cdots,(n-1,n)\} = \{P_1,P_2,\cdots,P_{n/2}\}$, there are $2^{\frac{n}{2}}$ subsets of *S*. That is, $m=2^{\frac{n}{2}}$.
- **Theorem.** In the even-town problem, $m \leqslant 2^{\frac{n}{2}}$.
- **Proof.** Define v_i as before, and let

$$A = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{pmatrix}_{m \times n}$$

 $\operatorname{rank} A = \dim \operatorname{span} \{v_i\}, \text{ and } \operatorname{rank} A + \dim \operatorname{Ker} A = n(\operatorname{number of columns of } A).$

Case1: rank $A \leq \frac{n}{2}$

This shows that dim span $\{v_1, v_2, \cdots, v_m\} \leqslant \frac{n}{2}$, so span $\{v_1, v_2, \cdots, v_m\} \subseteq \mathbb{F}_2^{n/2}$, $m \leqslant 2^{\frac{n}{2}}$. Case2: rank $A \geqslant \frac{n}{2} + 1$

This implies that we have at least $\frac{n}{2}+1$ linearly independent vectors, say $u_1, u_2, \cdots, u_{\frac{n}{2}+1}$, consider

$$A oldsymbol{u}_{oldsymbol{i}}^T = egin{pmatrix} < oldsymbol{v_1}, oldsymbol{u_i} > \ < oldsymbol{v_2}, oldsymbol{u_i} > \ < oldsymbol{v_m}, oldsymbol{u_i} > \end{pmatrix} = egin{pmatrix} \operatorname{even} \ \operatorname{even} \ dots \ \operatorname{even} \end{pmatrix} = egin{pmatrix} 0 \ 0 \ dots \ \end{array} ext{over } \mathbb{F}_2$$

so $\{u_1, u_2, \cdots, u_{\frac{n}{2}+1}\} \subseteq \text{Ker}A$, dim $\text{Ker}A \geqslant \frac{n}{2}+1$. But it contradicts to rankA + dim KerA = n.