
Combinatorial Networks
Week 6, April 22-23

Even-cycles-free

• For bipartite H (so χ(H) = 2), it is unknown the order of ex(n,H).

• For any H with χ(H) = k + 1 > 3, ex(n,H) = (1− 1
k + oH(1))n

2

2 .

• For special bipartite graphs, the even cycles C2t, it is known that ex(n,C2t) 6 O(n1+
1
t )

• Conjecture. ∀t > 2, ex(n,C2t) = Θ(n1+
1
t )

• Definition. Let F = {some graphs H}, ex(n,F) = the maximum of e(G), G has n vertices,
∀H ∈ F , G is H-free.

• Theorem. ∀t > 2, ex(n, {C3, C4, · · · , C2t}) 6 n1+
1
t + n

• Lemma. Every graph with at least dn edges has a subgraph whose minimum degree is at
least d.

• Proof of Lemma. Delete vertices whose degrees are less than d. The subgraph left is not
empty because the number of deleted edges is less than dn.

• Proof of Theorem. Suppose there is a {C3, C4, · · · , C2t}-free n-vertices graphG with more

than n1+
1
t +n edges. By lemma, G has a subgraph G′ with minimum degree S(G′) > n

1
t +1.

Consider G′ and the BFS-tree(Breadth-First Search).
Fix v ∈ V (G′), define L0 = v, L1 = N(v)

Li+1 = {w ∈ V (G′)−
i⋃

j=0
Lj : ∃u ∈ Li, uw ∈ E(G′)} = N(Li)−

i⋃
j=0

Lj

And G′ is {C3, C4, · · · , C2t}-free, so |Li| > n
1
t |Li−1|, |Li| > n

i
t , |Lt| > n, a contradiction.

This shows that ex(n, {C3, C4, · · · , C2t}) 6 n1+
1
t + n.

Kt,t-free

• Recall: ex(n,Ks,t) 6 Cn2−
1
t for s > t > 2

• Conjecture. ∀t > 2, ex(n,Kt,t) = Θ(n2−
1
t )

open for t > 4, need a lower bound.

• Theorem(Erdös). ex(n,K2,2) = Θ(n
3
2 )

• Proof. We construct an n-vertex graph with NO K2,2 as follows.
Let p > 2 be a prime, V (G) = {(x, y) : x, y ∈ Zp, x 6= y}, n = p(p − 1). For (x, y),

(a, b) ∈ V (G), define (x, y)
G
v (a, b) iff xa+ yb ≡ 1 (mod p). And ∀v ∈ V (G), d(v) = p, we

call G is p-regular.
Next we verify G is K2,2-free. Suppose NOT, say ∃(a1, b1), (a2, b2) ∈ V (G), s.t.{

a1x+ b1y ≡ 1 mod p

a2x+ b2y ≡ 1 mod p

has 2 solutions, a contradiction.
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• Theorem(Brown). ex(n,K3,3) = Θ(n
5
3 )

• Proof. Let p > 2 be a prime, define G by V (G) = {(x, y, z) : x, y, z ∈ Zp, x 6= y 6= z},
n = p(p− 1)(p− 2). For (x, y, z), (a, b, c) ∈ V (G), (x, y, z)

G
v (a, b, c) iff (x− a)2 + (y− b)2 +

(z − c)2 ≡ 1 (mod p). G is p-regular with d = Θ(p2), e(G) = 1
2nd = Θ(n

5
3 )

Verify G has NO K3,3. Suppose NOT, say ∃(a1, b1, c1), (a2, b2, c2) ∈ V (G), s.t.
(x− a1)2 + (y − b1)2 + (z − c1)2 ≡ 1 mod p

(x− a2)2 + (y − b2)2 + (z − c2)2 ≡ 1 mod p

(x− a3)2 + (y − b3)2 + (z − c3)2 ≡ 1 mod p

has 3 solutions, a contradiction.(Consider in R3, since 3 spheres in general position intersect
in at most 2 points.)

1-Distance Problems

• Recall: ex(n,Ks,t) = O(n1−
1
t ).

In particular, ex(n,K2,3) = O(n
3
2 )

• Problem 1. In plane, given n vertices in general position, how many pairs of points have
distance 1?

• Define a graph G on these n vertices, a
G
v b iff the distance between a and b is 1.

Fact. G is K2,3-free. Because two circle at a and b with radius 1 intersect in at most 2
points.

• Theorem 1. There are at most O(n
3
2 ) pairs at distance 1.

• Proof. Define G as above, so the number of pairs at distance 1 equals to e(G), where G is
K2,3-free.

• Erdös. Construct n points in plane with n
1+ 1

log logn pairs at distance 1.

• Open Problem. Find an example of n points with n1+c pairs at distance 1 for some c > 0.

• Problem 2. How many points in Rn s.t. the distance between any 2 points is 1.

• Theorem 2. In Rn, there are at most n + 1 points such that the distance between any 2
points is 1.

• Proof. Consider Rn, say ∃m points with distance 1 to each other. We may assume that
one of the m points is (0, 0, · · · , 0), then the other m − 1 points can be viewed as vectors,
say v1,v2, · · · ,vm−1, and

∀i, < vi,vi >= 1;∀i 6= j,< vi,vj >=
1

2

Let

A =


v1
v2
...

vm−1


(m−1)×n

AAT =


1 1/2 · · · 1/2

1/2 1 · · · 1/2
...

...
. . .

...
1/2 1/2 · · · 1


(m−1)×(m−1)
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Since det(AAT ) 6= 0, m− 1 =rank(AAT ) 6rank(A) 6 n, so m 6 n+ 1.

2-Distance Problem

• How many points can we have in Rn, such that their distance are one of 2 choices.

• Example 1. We can find
(
n
2

)
such points.

Consider 0-1 vectors whose 1-norm are exactly 2.

• Example 2. We can find
(
n+1
2

)
such points in a n-dimension space.

In Rn+1, we can find
(
n+1
2

)
such points according to Example 1. And those points are in

the plane {x = (x1, x2, · · · , xn+1) :
n+1∑
i=1

xi = 2}, which is a n-dimension space.

• Theorem. There are at most
(
n+2
2

)
+ n + 1 points in Rn such that there distances are of

2 choices.

• Proof. Let a(1), a(2), · · · , a(m) ∈ Rn form a 2-distance set with distances d1, d2, write

a(i) = (a
(i)
1 , a

(i)
2 , · · · , a(i)n ). Define fi : Rn → R,

fi(x) = (
∥∥∥x− a(i)∥∥∥2 − d21)(∥∥∥x− a(i)∥∥∥2 − d22)

we have fi(a
(i)) = d21d

2
2 for ∀i, and fi(a

(j)) = 0 for ∀i 6= j.

Let λ1, λ2, · · · , λm ∈ R, and
m∑
i=1

λifi = 0, that is
m∑
i=1

λifi(x) ≡ 0 for ∀x ∈ Rn.

∀j, 0 =

m∑
i=1

λifi(a
(j)) = λjd

2
1d

2
2 ⇒ λj = 0

So f1, f2, · · · , fm are linearly independent. They are all polynomials, and in the polynomial
space which is spanned by

(

n∑
k=1

x2k)2, (

n∑
k=1

x2k)xi, xixj , xi, 1

whose dimension is
(
n+2
2

)
+ n+ 1. So m =dim span{f1, f2, · · · , fm} 6 the dimension of the

space above =
(
n+2
2

)
+ n+ 1.

Odd-Town Problem

• Problem. Suppose we have a town with n people, they are assigned to form m clubs
A1, A2, · · · , Am such that
(1) |Ai| is odd.
(2) |Ai

⋂
Aj | is even for ∀i 6= j.

How many clubs can we have?

• Examples. Here are some examples where m = n.
(1) Ai = {i}
(2) Ai = [n]− {i}, n is even.
(3) A1 = [n]− {1}, A2 = [n]− {2} and Ai = {1, 2, i} for i > 2, n is even.
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• Theorem. In the odd-town problem, m 6 n.

• Proof. For Ai, define 0-1 vector vi, vi(j) = 1 iff j ∈ Ai. We have
< vi,vi >= |Ai| is odd.
< vi,vj >= |Ai

⋂
Aj | is even for ∀i 6= j.

Claim: v1,v2, · · · ,vm are linearly independent over F2.
Proof: Exercise.
Since v1,v2, · · · ,vm ∈ Fn

2 are linearly independent, m 6 n.
Or we can let

A =


v1
v2
...

vm


m×n

AAT =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


m×m

over F2

so m =rank(AAT ) 6rankA 6 n.

Even-Town Problem

• Problem. Suppose we have distinct A1, A2, · · · , Am ⊆ [n], satisfying
(1) |Ai| is even.
(2) |Ai

⋂
Aj | is even for ∀i 6= j.

How much can m be?

• Example. Pair the n elements into n/2 pairs, say S = {(1, 2), (3, 4), · · · , (n − 1, n)} =
{P1, P2, · · · , Pn/2}, there are 2

n
2 subsets of S. That is, m = 2

n
2 .

• Theorem. In the even-town problem, m 6 2
n
2 .

• Proof. Define vi as before, and let

A =


v1
v2
...

vm


m×n

rankA =dim span{vi}, and rankA+dim KerA = n(number of columns of A).
Case1: rankA 6 n

2

This shows that dim span{v1,v2, · · · ,vm} 6 n
2 , so span{v1,v2, · · · ,vm} ⊆ Fn/2

2 , m 6 2
n
2 .

Case2: rankA > n
2 + 1

This implies that we have at least n
2 +1 linearly independent vectors, say u1,u2, · · · ,un

2
+1,

consider

AuT
i =


< v1,ui >
< v2,ui >

...
< vm,ui >

 =


even
even

...
even

 =


0
0
...
0

over F2

so {u1,u2, · · · ,un
2
+1} ⊆KerA, dim KerA > n

2+1. But it contradicts to rankA+dim KerA =
n.
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