Combinatorial Networks
Week 6, April 22-23

Even-cycles-free

For bipartite H (so x(H) = 2), it is unknown the order of ex(n, H).

For any H with x(H) =k+1>3, ex(n,H) =(1— % —i—oH(l))";.

For special bipartite graphs, the even cycles Cy, it is known that ex(n, Cy;) < O(nH%)
Conjecture. Vt > 2, ex(n,Cy) = @(nl“‘%)

Definition. Let F = {some graphs H}, ex(n, F) = the maximum of e(G), G has n vertices,
VH € F, G is H-free.

Theorem. vt > 2, cx(n, {C3,Ca,- -+, Cor}) <n'*i 4

Lemma. Every graph with at least dn edges has a subgraph whose minimum degree is at
least d.

Proof of Lemma. Delete vertices whose degrees are less than d. The subgraph left is not
empty because the number of deleted edges is less than dn. |

Proof of Theorem. Suppose thereisa {Cs,Cy, - -+ , Cot }-free n-vertices graph G with more

than nlti +n edges. By lemma, G has a subgraph G’ with minimum degree S(G’) > ni +1.
Consider G’ and the BFS-tree(Breadth-First Search).
Fix v € V(G’), define Lo =wv, L1 = N(v)

Liyi={weV(G) - UL Ju € Lj,uw € E(G')} = N(L;) — UL

And G’ is {C5,Cy, - - ,Cgt}—free so |Li| > nt ]LZ 1y [Li| = ]Lt\ n, a contradiction.
This shows that ex(n,{Cs3,Cy4,- -+ ,Cx%}) < +i 4. ]
K i-free

Recall: ex(n, Ky ) < Cn?7i for s>t >2

Conjecture. Vt > 2, ex(n, Ky ¢) = 9(n2*%)
open for t > 4, need a lower bound.
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Theorem(Erdos). ex(n, Ka2) = O(n

)

Proof. We construct an n-vertex graph with NO Kj 5 as follows.
Let p > 2 be a prime, V(G) = {(z,y) : v,y € Zp,x # y}, n = p(p — 1). For (z,y),

(a,b) € V(G), define (z,y) & (a,b) iff za+yb=1 (mod p). And Vv € V(G), d(v) = p, we
call G is p-regular.
Next we verify G is Ky o-free. Suppose NOT, say 3(al,bl), (a2,b2) € V(G), s.t

a1z +biy=1 modp
asr +by=1 modp

has 2 solutions, a contradiction. |
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Theorem(Brown). ex(n, K33) = O(n3)

Proof. Let p > 2 be a prime, define G by V(G) = {(z,y,2) : x,y,2 € Zp,x # y # 2},
G

n=pp-—1)(p—2). For (z,y, 2), (a,b,c) € V(G), (x,y,2) -~ (a,b,c) iff (:c5 a)+(y—b)?2+
(z—¢)? =1 (mod p). G is p-regular with d = O(p?), e(G) = 3nd = @(nE)

Verify G has NO K3 3. Suppose NOT, say 3(al,bl,cl), (a2,02,c2) € V(G), s

(& —a1)’ +(y —b1)* + (2 — 1)
P+ y—b2)’+(2-c)?=1 modp
(x—a3)®+(y—0b3)* +(2—c3)>*=1 modp
(

2=1 modyp

(x — ag

has 3 solutions, a contradiction.(Consider in R3, since 3 spheres in general position intersect
in at most 2 points.) ]

1-Distance Problems

Recall: ex(n, Ks;) = O(nl_%).
In particular, ex(n, Ko 3) = O(n%)

Problem 1. In plane, given n vertices in general position, how many pairs of points have
distance 17

Define a graph G on these n vertices, a & b iff the distance between a and b is 1.
Fact. G is Ks3-free. Because two circle at a and b with radius 1 intersect in at most 2
points.

Theorem 1. There are at most O(n%) pairs at distance 1.

Proof. Define G as above, so the number of pairs at distance 1 equals to e(G), where G is
K273—free. |
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Erdoés. Construct n points in plane with n' T ioglogn pairs at distance 1.
Open Problem. Find an example of n points with n'*¢ pairs at distance 1 for some ¢ > 0.
Problem 2. How many points in R™ s.t. the distance between any 2 points is 1.

Theorem 2. In R"”, there are at most n + 1 points such that the distance between any 2
points is 1.

Proof. Consider R", say Idm points with distance 1 to each other. We may assume that
one of the m points is (0,0,---,0), then the other m — 1 points can be viewed as vectors,
say Ui1,V2," -, Um-—1, and

1
Vi, < v;,v; >= 1;Vi 75], < V;,05 >= 5

Let
v 1 1/2 - 1/2
v 1/2 1 - 1/2
a=| 7 aar— |2
Um—1/ (;,_1)xn 2 12 -1 (m—1)x(m—1)



Since det(AAT) # 0, m — 1 =rank(AAT) <rank(A) < n,som < n+ 1. ]

2-Distance Problem

How many points can we have in R™, such that their distance are one of 2 choices.

Example 1. We can find (’;) such points.
Consider 0-1 vectors whose 1-norm are exactly 2.

Example 2. We can find (”H) such points in a n-dimension space.

2
In Rt we can find (n;rl) such points according to Example 1. And those points are in
n+1
the plane {x = (z1,22, - ,Tnt1) : Y, x; = 2}, which is a n-dimension space.
i=1
Theorem. There are at most (";2) 4+ n + 1 points in R™ such that there distances are of
2 choices.
Proof. Let aM.a® ... a(™ € R" form a 2-distance set with distances di,ds, write

a® = (@ ol .. al?). Define f; : R" - R,

@) = (fr = o[~ @)}~ a®| - )

we have f;(a”) = d2d3 for Vi, and fi(al9)) = 0 for Vi # j.
Let A1, Ao, ;A € Ry and > N f; =0, that is > A\;fi(z) =0 for Va € R™.
i=1 i=1

V5,0 =3 Xifi(a¥)) = N\jdids = X; =0
=1

So fi, fa,- -+, fm are linearly independent. They are all polynomials, and in the polynomial
space which is spanned by

n n
(Z z3)?, (Z T3 )T, Tiy, T, 1
k=1 k=1

whose dimension is (";2) +n+ 1. So m =dim span{fi, f2,--- , fm} < the dimension of the
space above = (”er?) +n+ 1. |

Odd-Town Problem

Problem. Suppose we have a town with n people, they are assigned to form m clubs
Ay, Ag, -+, Ay, such that

(1) |A;] is odd.

(2) |4 Aj] is even for Vi # j.

How many clubs can we have?

Examples. Here are some examples where m = n.

(1) Ai = {i}

(2) A; = [n] — {i}, n is even.

(3) Ay = [n] — {1}, Ay = [n] — {2} and A; = {1,2,4} for i > 2, n is even.



e Theorem. In the odd-town problem, m < n.

e Proof. For A;, define 0-1 vector v;, v;(j) =1 iff j € A;. We have
< i, v; >=|A;| is odd.
< vi,v5 >= |A; () A;| is even for Vi # j.

Claim: vq, w2, , v, are linearly independent over F.
Proof: Exercise.
Since v1,v2, -+, Vm € Y are linearly independent, m < n.
Or we can let
v1 10 --- 0
Vo 01 --- 0
A=| | AAT = . over Fy
Um/ xn 00 - 1 mxm
so m =rank(AAT) <rankA < n. ]
Even-Town Problem
e Problem. Suppose we have distinct Ay, A, -+, Ay, C [n], satisfying

(1) |A;]| is even.
(2) |Ai N Aj] is even for Vi # j.

How much can m be?

e Example. Pair the n elements into n/2 pairs, say S = {(1,2),(3,4),---,(n — 1,n)} =
{P1, Py, -+, Pyo}, there are 27 subsets of S. That is, m = 22.

n
2

e Theorem. In the even-town problem, m < 22.
e Proof. Define v; as before, and let

U1

a=|"

(%
m/ mxn

rankA =dim span{v;}, and rankA+dim KerA = n(number of columns of A).
Casel: rankA < §

This shows that dim span{vy, vz, - ,vm} < §, so span{vy, vz, -+ ,Vm} C Fg/2, m <22,
Case2: rankA > § + 1
This implies that we have at least 5 +1 linearly independent vectors, say w1, uz, - - yUn 41,
consider

< vi,u; > even 0

< v, U; > even 0

AuiT = ’ = ) = | . |over Fy
< Uy Wi > even 0

so{uy,ug, - ,u%_H} C Ker4, dim KerA > §+1. But it contradicts to rank A+dim KerA =
n. |



